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Abstract

Graphs are a common format for procedurally generated content in games. However, many graph-based approaches require

grammars to be manually authored or additional processing to add spatial layout information. In this work, we extend an

existing system for constrained graph generation that learns from examples. The main extension is adding graph layout

information directly into the graph learning and generation constraint problem by incorporating spatial transforms. We

demonstrate the approach in several level generation applications and potential use in citizen science games.
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1. Background
Graphs are one of many representations for procedurally

generated content [1] in games. When using graphs,

grammars are a popular technique [2, 3, 4, 5, 6]. However,

many graph-based approaches require these grammars

to be manually authored or additional processing to add

spatial layout information. Dormans’s work [7], for ex-

ample, uses a two-pass system of grammars, one that

first generates an abstract “mission” graph, which is then

used by a shape grammar to create the “space” for the

level.

A few approaches have learned graph generation from

examples, which can be considered a form of Procedural

Content Generation via Machine Learning (PCGML) [8].

For example, Londoño and Missura’s [9] work used ex-

ample Super Mario Bros. levels to learn graph patterns

and grammars. The approach of Hauck and Aranha [10]

learns a grammar for generating Super Mario Bros. levels,

but is highly tailored to that game’s tile grid structure.

Merrell and Manocha’s [11] work on continuous model

synthesis can also be considered learning to generate

graphs with layout from examples, though relies on con-

structing arrays of intersecting lines or planes and using

these for node and edge placement. Merrell’s [12] more

recent work can also be considered learning graph layout

from examples, and uses grammars.

In terms of graph layout, a wide variety of algorithms

have been developed, many incorporated into packages

such as GraphViz [13] and Tulip [14]. These generally

take an existing graph as input, rather than generating a

graph and layout simultaneously.
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In this work, we extend the existing Sturgeon-GRAPH

system [15] for constrained graph generation. Sturgeon-

GRAPH learns local patterns from example graphs and

uses them to generate new graphs; however, prior to

this work, it did not use spatial information, only learn-

ing connectivity. Here, we incorporate relative spatial

relationships between nodes in the patterns learned by

Sturgeon-GRAPH. These spatial relationships are then

incorporated into the graph generation constraint prob-

lem. Thus, the solution to the problem generates both

the graph connectivity structure and the spatial layout of

the nodes. We also use some other extensions in support

of this goal, including an alternate graph connectivity

constraint and pattern definitions. We demonstrate the

approach in level generation and possible use as a tool

in molecular citizen science games.

2. Overview
This work extends the existing Sturgeon-GRAPH sys-

tem [15] for constrained graph generation from exam-

ples. That system, built on the Sturgeon constraint-based

PCG system [16], first extracts a graph description, con-

sisting of distinct local patterns of labelled nodes and

edges, from example graphs. This graph description is

then used to set up a system of Boolean constraints, the

solution of which is a graph in which all patterns exist

in the example graphs. For efficiency, the system only

considers a subset of edges as potential edges for the so-

lution, rather than all possible edges between every pair

of nodes (e.g. band-n edges only consider edges between

nodes from id 𝑖 up to id 𝑖+ 𝑛).

Previously, Sturgeon-GRAPH used a constraint prob-

lem that handled graph generation, where layout was a

separate post-processing step. In this work, we extend

the Sturgeon-GRAPH system to incorporate layout in-

formation into the same constraint problem along with
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graph generation. This way, graph generation and layout

are solved in a single problem. This is done by including

constraints on relative spatial transforms, with support

for two types of 2D transformations (discussed below).

For the use of relative transformations, the proposed

approach works only with directed dtree or dag graph

types.

2.1. Graph Description Learning
When learning the graph description, before extracting

local patterns from the graph, relative spatial transforms

are added to the (directed) edges of the graph—the rela-

tive transform from the edge source to destination. This

is done by starting at the root of the graph and proceed-

ing breadth-first through the graph, adding the relative

transform from the source to the destination to each edge.

The two types of 2D transforms currently supported

are translation-only (𝒯 ) and translation-rotation (𝒯 ℛ).

For 𝒯 transforms, the relative transform on an edge is

just the relative x and y delta of the nodes. For 𝒯 ℛ
transforms, relative transforms are stored in the graph

description as polar coordinates: a magnitude, and rela-

tive angle from the incoming primary edge. As dags can

have nodes with more than one incoming edge, when

using 𝒯 ℛ one of the incoming edges (from the node with

lowest ID) is set as the primary incoming edge and used

for relative transforms.

After adding transform information to edges, pattern

learning from the example graphs proceeds much as be-

fore, except that the transform information is also con-

sidered when finding unique patterns.

2.2. Constrained Graph Generation
The relative transform information along edges is incor-

porated into the constraint problem to solve for global
transforms for each of the nodes. In order to incorpo-

rate spatial transforms into the constraint problem, Stur-

geon’s solver API needed to be extended to support real-

valued variables and some constraints on them. The

existing API only supported Boolean variables; this al-

lowed for a wide variety of low-level solvers to be used,

including those that do not support real-valued variables.

Thus, the following extensions to the API were only im-

plemented in the low-level Z3 solver [17]. Also here for

simplicity, we use the 𝐿∞ distance (e.g. square). The

following functions were added to the solver API:

MakeVarXform(𝑥𝑡𝑦𝑝𝑒) — Create a new transform vari-

able of type 𝑥𝑡𝑦𝑝𝑒 (𝒯 or 𝒯 ℛ). This may correspond to

more than one variable in the underlying low-level solver.

In our implementation, type 𝒯 uses two real variables,

and type 𝒯 ℛ uses six real variables representing the top

two rows of a 3×3 homogeneous transform matrix, with

bottom row implicitly (0, 0, 1). This function is used to

allocate a transform variable for each node.

GetVarPosXform(𝑣) — Get the position associated with

the given transform variable 𝑣. In our implementation, 𝒯
is just the two variables, while 𝒯 ℛ is the translation part

of the matrix. This function is used to get the positions

of the nodes out of the solution.

CnstrImpliesXform(𝑣, 𝑥0, 𝑥1, 𝑑𝑥, 𝑝𝑟𝑖𝑚𝑎𝑟𝑦) — Add a

constraint that if the Boolean variable 𝑣 is true, then

transform variable 𝑥1 is constrained to be the result of

the constant 𝑑𝑥 applied to transform variable 𝑥0 (in the

case of 𝒯 , this is addition, in the case of 𝒯 ℛ, matrix

multiplication). If the constant 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 is false, then

only the positional part of 𝑥1 is constrained to be a small

distance around the transformed location. This function

is used to set up constraints such that if an edge is present

in the solution, its relative transform is applied from its

source to its destination.

CnstrIdentityDistXform(𝑚𝑣𝑠, 𝑥𝑠,𝑚𝑖𝑛𝑑𝑖𝑠𝑡) — Add

constraints that the positional parts of the transform vari-

ables 𝑥𝑠, corresponding to the Boolean variables 𝑚𝑣𝑠
(which are variables for missing nodes) that are false, are

at least 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 distance apart. Also, add a constraint

that the first transform variable in 𝑥𝑠 is the identity trans-

form and the first variable in 𝑚𝑣𝑠 is false. This function

is used to initialize basic positional constraints on the

transforms for nodes that are present in the solution.

2.3. Additional Extensions
In support of this work, we added a few other extensions

to Sturgeon-GRAPH.

First, we added support for different pattern definitions.

In the original Sturgeon-GRAPH, a pattern consists of a

key node, the edges connected to that node, and the nodes

connected to those edges, i.e. immediate neighbors (edge-

node patterns). In this work we added a pattern definition

that only includes the key node and its connected edges,

ignoring the labels of the connected nodes (edge-only

patterns).

We also added a new type of edges to consider,

stripe-n1,n2,...,nm, which, for a node with id 𝑖, considers

only edges to nodes with ids 𝑖+ 𝑛1, 𝑖+ 𝑛2, ..., 𝑖+ 𝑛𝑚.

We also added an alternative method for constrain-

ing graphs to be connected (i.e., not split into multiple

graphs). The previous method added a single “reachabil-

ity” variable for each node, started from a single reachable

root node, and followed directed edges out to make sure

all nodes in the graph were reachable from the root node.

The use of directed edges prevented independent cycles

from being found as connected but also limited generated

graphs to a single root node. In this work, we added an

approach where connectivity is computed using “reach-

ability layers”. There are 𝑁 layers, and each node has
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Figure 1: Sample generated mario graphs. These represent
Super Mario Bros. levels, and node labels are tile text.

a Boolean reachability variable in each layer. In layer 0,

exactly 1 node is reachable. If a node is not reachable

in layer 𝑛 − 1, and not connected (either as source or

destination) to a reachable node in layer 𝑛− 1, it is not

reachable in layer 𝑛. All nodes must either be reachable

by the final layer, or missing from the generated graph.
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Figure 2: Example graph and sample generated dungeon
graphs. These represent a dungeon layout, and node labels
are type of room.

Finally, we added support for unique undirected cycle

labeling. The aim of this is for cycles (or, what would

be cycles in the undirected version of the graphs) to be

learned as complete units. To accomplish this, we find

the cycle basis of the undirected graphs and augment the

label of each edge in a basis with the index of its basis

and index within its basis.

3. Applications
Here we describe a few applications of the system. For

each application, we generated ten graphs, to get timing

information and select samples for figures.

mario: This application is based on a version of Su-

per Mario Bros. 1-1 [18] from the VGLC [19], converted

into a grid graph. Node labels are the tile text from the

level. This is similar to the example application in pre-

vious Sturgeon-GRAPH work [15], except it considers

stripe-1,8 edges and learns the relative node positions

from the example, using them in the graph generation

process. Thus the grid layout can be handled without the



selected examples

1> b1

b
1

>1
1

1> s1
>1/2

1/2

>1/2

1/2

x >1/2
1/2

>1/4

1/4

1/2>
1/2

1/4>

1/4

generated

>1

m

1

1>

b
1

>1/2

b

s
1

b

s
1

1/2
>1/2

1/2

1>
1

1

1/2 1/2

1>x 1

x

>1/2

1/2

>1
1 b1

1

x 1
>1

1>

1

s

m
1/4

b 1/4

1/2

1/2

1

b
1/4

1/2>

1/2

1/4

b >1/2
1/2

1> s1

x

m
1/2

>1
1

b1

1/2

1/2

b 1

1>/2

1/2

b

1

1>
1

>1

1

Figure 3: A subset of the example graphs, and generated
fract graphs. These represent levels in an educational game
about fractions. Node labels are type of piece or space, and
edge labels are amount of laser.

specialized grid approach used previously.

This application used 𝒯 transforms with edge-node

patterns, and generated graphs between 60–80 nodes

with stripe-1,8 edges and at least one of each node label.

Sample generated graphs are shown in Figure 1. Average

generation time was 52.0s (SD=17.3s).

Notably, the graphs are not required to be rectangular.

This could present interesting challenges or opportunities

for gameplay.

dungeon: This application is a graph with branches

and turns, representing a simple dungeon game. It is

based on a manually-constructed example level, with

nodes labeled for the type of room represented: en-

trance (e), goal (g), branch (b), right turn (r), left turn

(l), straight hallway (h), and dead end (d).

This application used 𝒯 ℛ transforms with edge-only

patterns, and generated graphs between 10–15 nodes

with band-3 edges and at least one of each node label,

selected examples
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Figure 4: A subset of the example graphs, and generated
mol graphs. These represent small molecule structures, and
node labels are atom types.

and at most one e and g node label. The example graph

and some sample generated graphs are shown in Figure 2.

Average generation time was 35.7s (SD=40.2s).

fract: Based on the math educational game, Refrac-

tion. In the game, lasers with numerical values come out

of sources. Lasers can be manipulated by various pieces

such as splitters, which split lasers into fractional parts,

or benders, which redirect lasers. The goal is to get lasers

with specific values to spaceships to power them up. The

game has been used for constraint-based level generation

before [20].

In this application, we manually created several small

example graphs demonstrating how pieces work. These

included labeled nodes for sources (□>), spaceships (>□),

splitters (s), benders (b), and mergers (m); we also in-



cluded nodes for spaces with lasers repeating (r) and

crossing (x) so that other pieces would not be placed in

their way. Edge labels represent the fractional value of

the laser.

This application used 𝒯 transforms with edge-only

patterns. To increase variety, the example graphs were

rotated 90, 180, and 270 degrees. Generated graphs be-

tween 10–15 nodes with band-4 edges and at least one m
and s node labels and two 1> node labels. Sample exam-

ple and generated graphs are shown in Figure 3. Average

generation time was 15.2s (SD=1.1s).

mol: Based on small molecule structures. Recently

deep learning methods have been proposed for generat-

ing small molecules, for example using SMILES string

representations [21] or directly on graphs [22, 23]; how-

ever, these learning approaches often use large training

datasets. In this application, seven 2D small molecule

PDBs from SMPDB [24] were converted to graph format.

Node labels were atomic types. Other information, such

as bond order (i.e. single/double/triple), was not used,

but could potentially be incorporated into labels in the

future. This application shows the flexibility of the ap-

proach, and we imagine it might be useful as a player

tool for molecular design in citizen science games such

as Foldit [25].

This application used 𝒯 ℛ transforms with edge-node

patterns. Undirected cycle labeling was used. Gener-

ated graphs were between 5–10 nodes with band-5 edges.

We generated graphs that both forbid and required undi-

rected cycles. Sample examples and generated graphs

are shown in Figure 4. Average generation time was 5.3s

(SD=3.7s) with cycles forbidden and 211.8s (SD=149.5s)

with cycles required.

Given the small size and small number of undirected

cycle examples, there was little variety in the graphs

requiring undirected cycles, often reproducing ringed

examples or very similar. They also took substantially

longer to generate.

4. Conclusion
In this work, we present an approach to learning con-

strained graph layouts from example graphs. This was ap-

proached by adding transform information to the graph

description and constraints using the Sturgeon-GRAPH

system [15].

In the future, we are interested in exploring other con-

straints on spatial positions, such as nodes being at cer-

tain locations, as well as expanding scalability to larger

graphs and 3D transformations. We would also like to

more thoroughly evaluate the generator, such as with an

expressive range [26] or playability analysis.
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